
SOLID is Solid
Enterprise principles in OOP architectural design-phase

pattern-level constructs

Hillel Wayne



SOLID

I Single responsibility

I Open–closed principle

I Liskov substitution principle

I Interface segregation principle

I Dependency inversion principle

@hillelogram



Why SOLID?

@hillelogram



Why SOLID?

@hillelogram



Why SOLID?

@hillelogram



Why SOLID?

@hillelogram



Why SOLID?

@hillelogram



Why SOLID?

@hillelogram



What We Can Learn From Software History

Hillel Wayne
hillelwayne.com
@hillelogram



www.hillelwayne.com/talks/software-history

@hillelogram



When you create the new classes, make sure you properly
test them and create them using SOLID principles so they
will be easier to change in the future.

If it’s too complex, it’s violating a ton of SOLID principles.

Don’t be STUPID: GRASP SOLID!

@hillelogram hillelwayne.com/talks/software-history



The Process

@hillelogram hillelwayne.com/talks/software-history



@hillelogram hillelwayne.com/talks/software-history



Do you know CS?

Can you think quickly?

@hillelogram hillelwayne.com/talks/software-history



Do you know CS?

Can you think quickly?

@hillelogram hillelwayne.com/talks/software-history



1. When did it happen?

@hillelogram hillelwayne.com/talks/software-history



@hillelogram hillelwayne.com/talks/software-history



2. What was the context?

@hillelogram hillelwayne.com/talks/software-history



Primary Source

Artifacts and information from that time

Secondary Source

Information produced after the fact

@hillelogram hillelwayne.com/talks/software-history



@hillelogram hillelwayne.com/talks/software-history



@hillelogram hillelwayne.com/talks/software-history



Do you know CS?

Can you think quickly?

@hillelogram hillelwayne.com/talks/software-history



3. What were the reasons?

@hillelogram hillelwayne.com/talks/software-history



Dynamic allocation

Fortran Nope

Lisps just cons it

Smalltalk copyWith: newElement

C Manual memory manipulation

@hillelogram hillelwayne.com/talks/software-history



Dynamic allocation

Fortran Nope

Lisps just cons it

Smalltalk copyWith: newElement

C Manual memory manipulation

@hillelogram hillelwayne.com/talks/software-history



Dynamic allocation

Fortran Nope

Lisps just cons it

Smalltalk copyWith: newElement

C Manual memory manipulation

@hillelogram hillelwayne.com/talks/software-history



Dynamic allocation

Fortran Nope

Lisps just cons it

Smalltalk copyWith: newElement

C Manual memory manipulation

@hillelogram hillelwayne.com/talks/software-history



Do you know CS?

Can you think quickly?

Have you used C?

@hillelogram hillelwayne.com/talks/software-history



Do you know CS?

Can you think quickly?

Have you used C?

@hillelogram hillelwayne.com/talks/software-history



Do you know CS?

Can you think quickly?

Have you used C?

@hillelogram hillelwayne.com/talks/software-history



4. What does this predict?

@hillelogram hillelwayne.com/talks/software-history



@hillelogram hillelwayne.com/talks/software-history



Does anyone know of a version of Smalltalk that runs on
Apollo workstations? [...] i’ve heard rumors that such a
program exists at Utah or Brown but have no firm pointers.
only full Smalltalk-80 please – not little Smalltalk.

@hillelogram hillelwayne.com/talks/software-history



Does anyone know of a version of Smalltalk that runs on
Apollo workstations? [...] i’ve heard rumors that such a
program exists at Utah or Brown but have no firm pointers.
only full Smalltalk-80 please – not little Smalltalk.

@hillelogram hillelwayne.com/talks/software-history



@hillelogram hillelwayne.com/talks/software-history



@hillelogram hillelwayne.com/talks/software-history



@hillelogram hillelwayne.com/talks/software-history



@hillelogram hillelwayne.com/talks/software-history



5. What are the loose ends?

@hillelogram hillelwayne.com/talks/software-history



@hillelogram hillelwayne.com/talks/software-history



Pointers require a complex form of doubly-indirected
thinking that some people just can’t do, and it’s pretty cru-
cial to good programming. A lot of the “script jocks” who
started programming by copying JavaScript snippets into
their web pages and went on to learn Perl never learned
about pointers, and they can never quite produce code of
the quality you need.

That’s the source of all these famous interview ques-
tions you hear about, like “reversing a linked list” or “de-
tect loops in a tree structure.”

@hillelogram hillelwayne.com/talks/software-history



Pointers require a complex form of doubly-indirected
thinking that some people just can’t do, and it’s pretty cru-
cial to good programming. A lot of the “script jocks” who
started programming by copying JavaScript snippets into
their web pages and went on to learn Perl never learned
about pointers, and they can never quite produce code of
the quality you need.

That’s the source of all these famous interview ques-
tions you hear about, like “reversing a linked list” or “de-
tect loops in a tree structure.”

@hillelogram hillelwayne.com/talks/software-history



@hillelogram hillelwayne.com/talks/software-history



Conclusion

@hillelogram hillelwayne.com/talks/software-history



www.hillelwayne.com/talks/software-history

@hillelogram hillelwayne.com/talks/software-history


	Fake Intro
	bunch of definitions
	And the Twist

	Real Intro
	The Process
	Intro
	1
	2
	3
	4
	5
	Later Years

	Conclusion

