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SOLID

I Single responsibility

I Open–closed principle

I Liskov substitution principle

I Interface segregation principle

I Dependency inversion principle
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What We Can Learn From Software History
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When you create the new classes, make sure you properly
test them and create them using SOLID principles so they
will be easier to change in the future.

If it’s too complex, it’s violating a ton of SOLID principles.

Don’t be STUPID: GRASP SOLID!

@hillelogram hillelwayne.com/talks/software-history



The Process
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Do you know CS?

Can you think quickly?
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1. When did it happen?
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2. What was the context?
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Primary Source

Artifacts and information from that time

Secondary Source

Information produced after the fact
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Do you know CS?

Can you think quickly?
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3. What were the reasons?
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Dynamic allocation

Fortran Nope

Lisps just cons it

Smalltalk copyWith: newElement

C Manual memory manipulation
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Dynamic allocation

Fortran Nope

Lisps just cons it

Smalltalk copyWith: newElement
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Do you know CS?

Can you think quickly?

Have you used C?
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4. What does this predict?
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Does anyone know of a version of Smalltalk that runs on
Apollo workstations? [...] i’ve heard rumors that such a
program exists at Utah or Brown but have no firm pointers.
only full Smalltalk-80 please – not little Smalltalk.
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5. What are the loose ends?
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Pointers require a complex form of doubly-indirected
thinking that some people just can’t do, and it’s pretty cru-
cial to good programming. A lot of the “script jocks” who
started programming by copying JavaScript snippets into
their web pages and went on to learn Perl never learned
about pointers, and they can never quite produce code of
the quality you need.

That’s the source of all these famous interview ques-
tions you hear about, like “reversing a linked list” or “de-
tect loops in a tree structure.”
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Conclusion
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