SOLID is Solid

Enterprise principles in OOP architectural design-phase
pattern-level constructs

Hillel Wayne

SOLID

Single responsibility

Open—closed principle

>

>

> Liskov substitution principle
> Interface segregation principle
>

Dependency inversion principle

Ohillelogram

Why SOLID?

Qhillelogram

Why SOLID?

Qhillelogram

Why SOLID?

Ohillelogram

B Robert Martin

If | had to write commandments, these would be candidates.

1. Software entities (classes, modules, etc) should be open for
extension, but closed for modification. (The open/closed
principle -- Bertrand Meyer}

2. Derived classes must usable through the base class interface
without the need for the user to know the difference. (The
Liskov Substitution Principle)

3. Details should depend upon abstractions. Abstractions should
not depend upon detalls. (Principle of Dependency Inversion)

4. The granule of reuse Is the same as the granule of release
Only components that are released through a tracking system can
be effectively reused.

5. Classes within a released component should share common closure.
That s, if one needs to be changed, they all are likely to need
to be changed. What affects one, affects all.

6. Classes within a released componen should be reused together.
That is, it is impossible 10 Separate the components from each
other in order to reuse less than the total.

7. The dependency structure for released components must be a DAG.
There can be no cycles.

8. Dependencies between released components must run in the
direction of stability. The dependee must be more stable than
the depender.

9. The more stable a released component is, the more it must
consist of abstract classes. A completely stable component
should consist of nothing but abstract classes.

10. Where possible, use proven patterns to solve design problems.

11. When crossing between two different paradigms, build an
interface layer that separates the two. Don't pollute one side
with the paradigm of the other.

Robert Martin | Design Consulting | Training courses offered:
Object Mentor Assoc.| rma...@rcmcon.com | Object Oriented Analysis
2080 Cranbrook Rd 708) 9181004 | Object Oriented Design
Green Oaks IL 60048 | Fax: (708) 918-1023 | C++

Why SOLID?

- :
Principles, Patterns, and Practices

Robert C. Martin
wilh contributions by James W. Newkirk and Robert S. Koss

Ohillelogram

Why SOLID?

Robert C. Martin Series

Clean Code

A Handbook of Agile Software Craftsmanship

Robert C. Martin

Ohillelogram

Why SOLID?

Robert C. Martin Series

Clean Architecture

Robert C. Martin

Ohillelogram

What We Can Learn From Software History

Hillel Wayne
hillelwayne.com
@hillelogram

www. hillelwayne.com /talks/software-history

Ohillelogram

When you create the new classes, make sure you properly
test them and create them using SOLID principles so they
will be easier to change in the future.

If it's too complex, it's violating a ton of SOLID principles.

Don't be STUPID: GRASP SOLID!

Ohillelogram hillelwayne.com /talks/software-history

The Process

Ohillelogram hillelwayne.com /talks/software-history

2

Reverse a linked list

Given pointer to the head node of a linked list, the task is to reverse the linked list. We need to reverse the list by changing links be-
tween nodes.

Examples:

Input: Head of following linked list
1-22-23->4->NULL

Output: Linked list should be changed to,
4-23->2->1->NULL

Input: Head of following linked list
1-52-53->4->5->NULL

Output: Linked list should be changed to,
5-24-53->2->1->NULL

Input: NULL

Output: NULL

Input: 1->NULL

Output: 1->NULL

©hillelogram hillelwayne.com /talks/software-history

Do you know CS?

Ohillelogram hillelwayne.com /talks/software-history

Do you know CS?

Can you think quickly?

Ohillelogram hillelwayne.com /talks/software-history

1. When did it happen?

Ohillelogram hillelwayne.com /talks/software-history

Employment in Computer Services
Has Grown Rapidly Since 1972
1,200 -
1.co00
— sop
E 00 1
é 400 ‘
200
’ 1“72 1876 1880 1984 1988 1982
EOUAGCE. Current Evgloyment Statascs Progmum. Bursay of Libes Statster

Ohillelogram hillelwayne.com /talks/software-history

2. What was the context?

Ohillelogram hillelwayne.com /talks/software-history

Primary Source
Artifacts and information from that time

Secondary Source
Information produced after the fact

Ohillelogram hillelwayne.com /talks/software-history

Google

"A 1980 Interview Manual That Explains Why Linked Lists Make Good Question: O,

Q Al BDvideos & Maps [Eimages B News

i More Settings Tools

Your search - "A 1980 Interview Manual That Explains Why Linked Lists Make
Good Questions" - did not match any documents.

Suggestions:

+ Make sure all words are spelled correctly.
« Try different keywords.

« Try more general keywords.
« Try fewer keywords.

©hillelogram hillelwayne.com /talks/software-history

Ohillelogram

Bachelor’s Degrees in Computer Science
Down More Than 40 Percent Since 1986

45,000 .
1

-umnnl
|
as.c00

10,000
28,000 !
20,000 4
15,000 1
10,000 4
5,000 i

[} T T R T e e e B e]
1968 1870 1974 1878 1982 1986 1990 1994

SELTICES: Mustinal Sesaes. Fiiuiin: U1, Oapammtsd of Eaucusion, Suscral Oenin for Education Sistasics

FIGURE 5

hillelwayne.com /talks/software-history

Pe-yetkrow-€5?

Can you think quickly?

Ohillelogram hillelwayne.com /talks/software-history

3. What were the reasons?

Ohillelogram hillelwayne.com /talks/software-history

Dynamic allocation

Qhillelogram hillelwayne.com /talks/software-history

Dynamic allocation

Fortran Nope

Qhillelogram hillelwayne.com /talks/software-history

Dynamic allocation

Fortran Nope
Lisps just cons it

Smalltalk copyWith: newElement

Qhillelogram hillelwayne.com /talks/software-history

Dynamic allocation

Fortran Nope
Lisps just cons it
Smalltalk copyWith: newElement

C Manual memory manipulation

Qhillelogram hillelwayne.com /talks/software-history

Ohillelogram hillelwayne.com /talks/software-history

Ohillelogram hillelwayne.com /talks/software-history

Have you used C?

Ohillelogram hillelwayne.com /talks/software-history

4. What does this predict?

Ohillelogram hillelwayne.com /talks/software-history

Percent Posts Mentioning "Pointer"

%

Prolog Lisp Smalltalk Pascal C

Ohillelogram hillelwayne.com /talks/software-history

Does anyone know of a version of Smalltalk that runs on
Apollo workstations? [...] i've heard rumors that such a
program exists at Utah or Brown but have no firm pointers.
only full Smalltalk-80 please — not little Smalltalk.

Ohillelogram hillelwayne.com /talks/software-history

Does anyone know of a version of Smalltalk that runs on
Apollo workstations? [...] i've heard rumors that such a
program exists at Utah or Brown but have no firm pointers.
only full Smalltalk-80 please — not little Smalltalk.

Ohillelogram hillelwayne.com /talks/software-history

Percent Posts Mentioning "Pointer"

%

Prolog Lisp Smalltalk Pascal C

Ohillelogram hillelwayne.com /talks/software-history

Percent Posts Mentioning "Pointer"

%

Prolog Lisp Smalltalk Pascal C

Ohillelogram hillelwayne.com /talks/software-history

Percent Posts Mentioning "Pointer"

15 4

%

Prolog Lisp Smalltalk Pascal C

Ohillelogram hillelwayne.com /talks/software-history

Percent Posts Mentioning "Pointer"

15 4

%

Prolog Lisp Smalltalk Pascal C

Ohillelogram hillelwayne.com /talks/software-history

5. What are the loose ends?

Ohillelogram hillelwayne.com /talks/software-history

SMART
& GEIS
THINGS DONE

ne.com /talks/software-history

Pointers require a complex form of doubly-indirected
thinking that some people just can’t do, and it's pretty cru-
cial to good programming. A lot of the “script jocks” who
started programming by copying JavaScript snippets into
their web pages and went on to learn Perl never learned
about pointers, and they can never quite produce code of
the quality you need.

Ohillelogram hillelwayne.com /talks/software-history

Pointers require a complex form of doubly-indirected
thinking that some people just can’t do, and it's pretty cru-
cial to good programming. A lot of the “script jocks” who
started programming by copying JavaScript snippets into
their web pages and went on to learn Perl never learned
about pointers, and they can never quite produce code of
the quality you need.

That's the source of all these famous interview ques-
tions you hear about, like “reversing a linked list” or ‘“de-
tect loops in a tree structure.”

Ohillelogram hillelwayne.com /talks/software-history

Qhillelogram

CRACKING THE * fmn.

CODING
INTERVIEW

150 programming interview questions and solutions
Plus:

. Five hes to salving tough algorithm questions

+ Ten mistakes candidates make —and how to avoid them
+ Steps to prepare for behavioral and technical questions

« Interviewer war stories: a view from the interviewer's side

GAYLE LAAKMANN

Founder and CEO, CareerCup.com

hillelwayne.com /talks/software-history

Conclusion

Ohillelogram hillelwayne.com /talks/software-history

www. hillelwayne.com /talks/software-history

Ohillelogram hillelwayne.com /talks/software-history

	Fake Intro
	bunch of definitions
	And the Twist

	Real Intro
	The Process
	Intro
	1
	2
	3
	4
	5
	Later Years

	Conclusion

