SOLID is Solid

Enterprise principles in OOP architectural design-phase
pattern-level constructs
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SOLID

Single responsibility

Open—closed principle

>

>

> Liskov substitution principle
> Interface segregation principle
>

Dependency inversion principle
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B Robert Martin

If | had to write commandments, these would be candidates.

1. Software entities (classes, modules, etc) should be open for
extension, but closed for modification. (The open/closed
principle -- Bertrand Meyer}

2. Derived classes must usable through the base class interface
without the need for the user to know the difference. (The
Liskov Substitution Principle)

3. Details should depend upon abstractions. Abstractions should
not depend upon detalls. (Principle of Dependency Inversion)

4. The granule of reuse Is the same as the granule of release
Only components that are released through a tracking system can
be effectively reused.

5. Classes within a released component should share common closure.
That s, if one needs to be changed, they all are likely to need
to be changed. What affects one, affects all.

6. Classes within a released componen should be reused together.
That is, it is impossible 10 Separate the components from each
other in order to reuse less than the total.

7. The dependency structure for released components must be a DAG.
There can be no cycles.

8. Dependencies between released components must run in the
direction of stability. The dependee must be more stable than
the depender.

9. The more stable a released component is, the more it must
consist of abstract classes. A completely stable component
should consist of nothing but abstract classes.

10. Where possible, use proven patterns to solve design problems.

11. When crossing between two different paradigms, build an
interface layer that separates the two. Don't pollute one side
with the paradigm of the other.

Robert Martin | Design Consulting | Training courses offered:
Object Mentor Assoc.| rma...@rcmcon.com | Object Oriented Analysis
2080 Cranbrook Rd 708) 9181004 | Object Oriented Design
Green Oaks IL 60048 | Fax: (708) 918-1023 | C++
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Principles, Patterns, and Practices
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Why SOLID?
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Clean Code

A Handbook of Agile Software Craftsmanship
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Why SOLID?

Robert C. Martin Series

Clean Architecture
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What We Can Learn From Software History
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When you create the new classes, make sure you properly
test them and create them using SOLID principles so they
will be easier to change in the future.

If it's too complex, it's violating a ton of SOLID principles.

Don't be STUPID: GRASP SOLID!
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The Process
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Reverse a linked list

Given pointer to the head node of a linked list, the task is to reverse the linked list. We need to reverse the list by changing links be-
tween nodes.

Examples:

Input: Head of following linked list
1-22-23->4->NULL

Output: Linked list should be changed to,
4-23->2->1->NULL

Input: Head of following linked list
1-52-53->4->5->NULL

Output: Linked list should be changed to,
5-24-53->2->1->NULL

Input: NULL

Output: NULL

Input: 1->NULL

Output: 1->NULL
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Do you know CS?
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Do you know CS?

Can you think quickly?
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1. When did it happen?
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Employment in Computer Services
Has Grown Rapidly Since 1972
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2. What was the context?
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Primary Source
Artifacts and information from that time

Secondary Source
Information produced after the fact
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Google

"A 1980 Interview Manual That Explains Why Linked Lists Make Good Question: O,

Q Al BDvideos & Maps [Eimages B News

i More Settings  Tools

Your search - "A 1980 Interview Manual That Explains Why Linked Lists Make
Good Questions" - did not match any documents.

Suggestions:

+ Make sure all words are spelled correctly.
« Try different keywords.

« Try more general keywords.
« Try fewer keywords.
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Bachelor’s Degrees in Computer Science
Down More Than 40 Percent Since 1986
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Pe-yetkrow-€5?

Can you think quickly?
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3. What were the reasons?
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Dynamic allocation
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Dynamic allocation

Fortran Nope
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Dynamic allocation

Fortran Nope
Lisps just cons it

Smalltalk copyWith: newElement
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Dynamic allocation

Fortran Nope
Lisps just cons it
Smalltalk copyWith: newElement

C Manual memory manipulation
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Have you used C?
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4. What does this predict?
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Percent Posts Mentioning "Pointer"

%

Prolog Lisp Smalltalk Pascal C
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Does anyone know of a version of Smalltalk that runs on
Apollo workstations? [...] i've heard rumors that such a
program exists at Utah or Brown but have no firm pointers.
only full Smalltalk-80 please — not little Smalltalk.
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5. What are the loose ends?
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Pointers require a complex form of doubly-indirected
thinking that some people just can’t do, and it's pretty cru-
cial to good programming. A lot of the “script jocks” who
started programming by copying JavaScript snippets into
their web pages and went on to learn Perl never learned
about pointers, and they can never quite produce code of
the quality you need.
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Pointers require a complex form of doubly-indirected
thinking that some people just can’t do, and it's pretty cru-
cial to good programming. A lot of the “script jocks” who
started programming by copying JavaScript snippets into
their web pages and went on to learn Perl never learned
about pointers, and they can never quite produce code of
the quality you need.

That's the source of all these famous interview ques-
tions you hear about, like “reversing a linked list” or ‘“de-
tect loops in a tree structure.”
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CRACKING THE * fmn.

CODING
INTERVIEW

150 programming interview questions and solutions
Plus:

. Five hes to salving tough algorithm questions

+ Ten mistakes candidates make —and how to avoid them
+ Steps to prepare for behavioral and technical questions

« Interviewer war stories: a view from the interviewer's side

GAYLE LAAKMANN

Founder and CEO, CareerCup.com
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Conclusion
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